Simulation in rubber formulation
development using AlSraf Compounder

by Hans-Joachim Graf and Christoph Hartwich, H-JG
Consulting

The integration of artificial intelligence (Al) into rubber com-
pound development marks a transformative step in materials
science. This article explores the use of Al6mf Compounder
software to simulate and optimize rubber formulations. By le-
veraging feedforward neural networks, the system can predict
material properties based on ingredient compositions, reducing
the need for extensive physical testing and accelerating the de-
velopment cycle (refs. 1-5). The methodology emphasizes the
importance of high quality, structured datasets, especially those
derived from Design of Experiments (DoE) in combination with
other experimental strategies for accurate simulations. Several
case studies demonstrate the software’s effectiveness across
various compound types, including EPDM and NR formula-
tions, showcasing its predictive capabilities and alignment with
experimental data. Challenges such as data inconsistency, mea-
surement errors and the limitations of unstructured datasets are
addressed through targeted validation and statistical analysis.
Ultimately, the fusion of Al and structured experimental design
enables more efficient, data driven decision making in rubber
compound development, paving the way for innovation and
performance optimization across the industry.

Use of artificial intelligence in rubber development

The rapid advancement of artificial intelligence (Al) has revolu-
tionized numerous industries in recent years. Al has already led
to profound changes in image and speech processing. However,
the combination of high computational power and intelligent
algorithms also opens up new possibilities in other areas, such
as materials research and development (ref. 6).

The rubber industry faces challenges similar to those en-
countered in other material science disciplines: high develop-
ment costs, lengthy testing cycles and the need to tailor materi-
als precisely to specific requirements. Implementing Al to allow
simulation processes offers a promising solution. Just as nu-
merical simulations are used in the automotive industry to pre-
dict mechanical stresses, crack growth in lifetime experiments
of metal, plastic parts or even in another field like chemistry to
model reaction mechanisms, Al could significantly advance
rubber development, as well.

Simulation as a basis for material development

A central aspect of rubber material development is the simula-
tion of formulations and their properties. Every simulation re-
quires precise data and relies on a well defined relationship be-
tween input parameters and the resulting material response. In
an Al powered environment, rubber formulations with their
properties can not only be predicted, but also analyzed in terms
of their expected physical and chemical dependencies and cor-
relations (refs. 7 and 8).

The core of such an Al driven approach is a neural network
based on feedforward Al software (ref. 9). This structure enables
the capture of complex relationships between formulation com-
ponents and their properties. Depending on the application, re-
cursive networks or deeper machine learning systems may also
be utilized in the future. In this case, a feedforward network is
employed, which is optimized through target criteria modifica-
tion to provide increasingly precise predictions.

Once the criteria’s fitness function identifies an optimal solu-
tion or the best balance between conflicting targets of the de-
fined material properties, the system generates a concrete for-
mulation recommendation. These recommendations are based
on existing data and allow for further analysis and optimization.

A data driven model for the rubber industry

Data driven modeling is playing an increasingly important role
in the rubber industry. Similar to the financial sector, where al-
gorithms make credit decisions based on historical data of any
customer, Al can create an objective decision making system in
materials science. This reduces experimental effort and enables
more efficient development cycles.

One major advantage of this method is the simultaneous
consideration of multiple target variables. While humans can
analyze only a limited number of factors at a time, a neural
network allows for a comprehensive assessment of all relevant
parameters. This leads to more precise and reliable predictions
closer to what is in the mind of the expert. However, the quality
of the results depends significantly on the underlying database.
Awell structured, sufficiently large dataset is essential for mean-
ingful simulation outcomes.

Testing Al software

When developing new polymer formulations, Al software is
often tested through validation experiments (ref. 10). Selected
datasets are removed from the database, and the Al software
must be able to calculate the missing values based on the re-
maining data sets. To perform this test, the physical properties
are targeted which belong to the removed dataset. The success,
pass or fail of this test depends on how accurately the Al recon-
structs the formulation of the material with its ingredients and
physical properties values.

An alternative testing strategy involves directly analyzing
the ingredient values of the formulation. The results show that
while the method is fundamentally effective, it has its limits, as
already stated, by the homogeneity and, to some extent, even
distribution of ingredient value data within the database. These
tests are crucial for evaluating Al performance in simulation and
identifying potential weaknesses early on. The problem may be
solved with adding data to fill the data gaps.

Simulation and data analysis opportunities
A major challenge in the rubber industry is the accuracy of ma-
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terial property measurements. Measurements are often error
prone, but these errors are not always, if not seldom, normally
distributed. As a result, simple statistical analyses of a historic
database are not only insufficient for obtaining reliable insights,
but rather impossible.

For example, the analysis of a small database containing 33
formulations can be visualized using different types of dia-
grams, such as bar charts or 3D scatter plots, to illustrate ingredi-
ent distribution and ingredient property influence. These meth-
ods provide an initial assessment of which calculations can be
effectively performed. In fact, if there is an uneven distribution
of factors, a full scale of solutions is restricted.

Additionally, correlation diagrams can be used to analyze
relationships between specific material properties to have a first
impression of the data. For instance, there is a physical correla-
tion between hardness and modulus, as both parameters are
linked to the stiffness of the material. Such correlations can be
used to assess data quality and ensure that model assumptions
are plausible.

Practical procedures for simulation

To conduct an Al driven simulation, data must first be imported
into the system. This can be done through spreadsheet imports
or direct database integration. Subsequently, all datasets can be
analyzed collectively, or specific datasets can be excluded to
simulate particular scenarios.

A useful strategy involves deliberately specifying contradic-
tory criteria to observe how the model responds. The simulation
results can then be cross-checked with expert knowledge and
validated through further experiments.

Example 1: Correlation diagram
A literature database is used to analyze the relationships be-

Figure 1 - two compounds excluded;
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tween formulation components and material properties (refs.
11-13). As expected, the correlation between hardness and
modulus is relatively weak due to the influence of various ingre-
dients in different formulations. The frequency distribution dia-
gram reveals that not all solutions may be feasible, depending
on the homogeneity of the database (figure 1).

For the first calculation, the target for carbon black CB N550
is set to 40 phr, with no plasticizer included. However, the for-
mula with this composition was initially blocked. The calcula-
tion yields a close match to the blocked formula and its corre-
sponding property data without requiring any modification of
the criteria (weight/trade-off).

In the second calculation, a different formula is excluded, but
its ingredients and corresponding values are used as criteria. The
weighting for all criteria is set equally at 40. The results show
that the amount of carbon black N330 does not exactly meet the
target. However, by increasing the weighting, the second calcu-
lation successfully aligns with the target.

When integrating this compound into the hardness-modulus
diagram, the data points are observed to be in close proximity
(figure 1: first calculation, upper right; second calculation).

This example demonstrates that using ingredient based pre-
dictions instead of property based predictions can yield reliable
results, provided that sufficient data are available to support the
solution.

Example 2: DoE simulation and confirmation experiment
Expanding on the concept of using ingredients instead of proper-
ties, this example explores the prediction of a series of com-
pounds following a DoE approach (ref. 14). A fractional factorial
DoE plan was created utilizing data from example 1, which was
subsequently validated through experiments. Further analysis al-
lows for a comparison between the predicted and experimentally
produced compounds, enabling statistical evaluation through the
DoE program. This approach helps assess the accuracy of the
data by comparing experimental results with database records.

Findings from this study contribute to the development of
predicted compounds that align with the DoE scheme. This ex-
periment, previously reported (ref. 15), utilized the same data-
base as example 1. A fractional factorial design was chosen,
with the following factors:

» CB N330: 30-70 phr

* CB N550: 0-20 phr

* Naphthenic oil: 5-45 phr

The compounds were then mixed, vulcanized and tested at
Mahidol University, Bangkok, Thailand (ref. 15). The calcula-
tions for the compound compositions were performed using the
Al software AIG=f Compounder. Finally, the two DoE datasets
were analyzed and compared using the DesignExpert software.

The results (figures 2 and 3) indicate differences largely in-
fluenced by variations in the molecular weights of the polymer,
and to some extent by differing mixing procedures which re-
main unknown for past database entries.

The slopes of the curves in figures 4 and 5 are similar, and
the midpoints of all the planes are in the same order. To quantify
the alignment between results, the mean data of the experiment
and simulation are provided in table 1.



Figure 2 - experiment (left) and simulated (right) Design

of Experiments (DoE): hardness dependency from CB330

and CB550 shown in 3D plot

The results show a significant influence of car-
bon black on M100 and static modulus (Cg,,) (fig-
ure 4). The resulting curves looking almost identi-
cal, exhibited some non-uniform and erratic behav-
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ior at CB N550, 27 phr level, prompting further
investigation of outliers and errors within the DoE.

By fitting regression curves, corrections were
made, but only to the data sets used in the calcula-
tion. The fitted data replaced the original values,
and the curves were recalculated. Notably, these
corrections impacted the lower and middle levels
of carbon black content, while the upper level re-
mained unaffected due to a lack of data for high
M100 and C,, compounds (figure 5).

As described above, the dynamic hardening fac-
tor (Cyyn/Cyo) Was calculated in the same manner.
The first run used the untreated data, while the

second run incorporated the corrected data. The

Only the value for Mooney scorch time deviates signifi-
cantly beyond any expected measurement error. However, all
other values fall within acceptable measurement error margins.

Opverall, the results demonstrate a strong alignment between
simulation and experimental outcomes except scorch time, with
minor discrepancies attributable to differences in mixing proce-
dures and polymer properties. Furthermore, they highlight the
advantages of integrating DoE techniques with Al driven data-
base analysis and laboratory practices.

NBR bushing/dynamic hardening dependent on fillers

This study examined the effect of silica beside the influence on
carbon black on the dynamic hardening of an elastomer bushing
(ref. 16). To evaluate the role of silica in a compound’s dynamic
behavior, three levels of carbon black N550 were selected, while
the silica content was increased stepwise with the plasticizer
remaining constant. Due to the symmetry of the data, it was
possible to calculate formulations that fit within the expected
scheme; however, minor variations in the plasticizer content had
to be accepted.

resulting curves for the lower and upper levels of
carbon black were nearly identical. However, at the middle
carbon black level (CB550, 27 phr), a noticeable slope change
was observed at lower silica concentrations (figure 6), indicated
with an arrow. This suggests that further analysis, or even a
complete repetition of the DoE, may be necessary to verify the
findings.

Table 1 - data comparison of experimental

and simulated DoE

Response name Units Mean Mean

experiment  simulation
Gravity g/ccm 1.11 1.11
Mooney MU 32.71 38.42
Mooney t5 Minutes 8.97 26.30
Hardness Durometer A 54.88 54.72
M300 MPa 8.27 7.75
Tensile MPa 21.24 22.45
Elongation at break % 54713 585.28
Compression set, % 50.79 32.37

70°C, 24 hours

Figure 3 - experiment (left)and simulated (right) DoE: §D plot shows result for compression set

dependency on CB33 and oil
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Figure 4 - modulus 100 over CB N550 and
silica

Young’s modulus 100

Figure 6 - NBR compound dynamic hardening
(VHF): 3 CB N550 levels and stepwise
decrease of silica level
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arrows indicate deviations
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The simulation revealed a strong dependence of the Al soft-
ware on data quality, which could be further optimized through
statistical error analysis. This study demonstrated that a detailed
statistical evaluation is required for each DoE factor, even when
the predicted and actual data initially appear to align well.

The graphs clearly highlight the dominant influence of fillers
on the viscoelastic hardening factor (VHF), while the effects of
almost all other ingredients appear minimal, or even negligible.

Simulation of accelerator combinations in EPDM compounds
This study investigates the impact of a co-accelerator under
varying sulfur concentrations (ref. 17). While the simulation
shows good agreement with experimental data, potential sourc-
es of error in the original dataset must be carefully considered.
The data used in this analysis come from a larger central
composite DoE with seven factors. A major challenge in such
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extensive experimental designs is the significant time and effort
required to mix and prepare all the compounds. Given the com-
plexity, one would expect a larger deviation or an increase in
errors. Surprisingly, however, no such trend is observed in the
prediction versus actual plot.

In the simulation, two sulfur levels were considered while
the accelerator ZdiBC was increased stepwise in 0.5 phr incre-
ments (figure 7). Instead of producing smooth curves, the results
showed a distribution of data points around a general trend line.

In this case, two possible approaches can be considered:

* Refining the dataset using DoE software to fit all data

points onto a regression function

* Repeating the simulation procedure to validate the results

From a statistical perspective, the first approach introduces

Figure 7 - stepwise change of ZDiBC at two

sulfur levels with questionable result due to
faulty data
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Figure 8 - modulus 100 over stepwise

increase of MBTS at two sulfur levels, but
constant SDT/S 2.2 phr
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Figure 9 - compression set over MBTS
stepwise increased at two sulfur levels, but
constant SDT/S 2.2 phr
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uncertainty, as it may distort the data’s natural variability. There-
fore, it is recommended to repeat the DoE with fewer factors per
block, and use a folding technique to improve reliability.

In general, larger DoE studies require deeper statistical
analysis to prevent misinterpretations and ensure accurate con-
clusions.

Natural rubber compounds: Simulation

In this example, a more unstructured database is used, consisting
of trial-and-error experiments alongside small blocks of datasets
generated using DoEs. All compounds are based on natural rub-
ber (NR) (ref. 18). The distribution of ingredients and their val-
ues is sufficiently broad to allow multiple simulations.

Most common NR compounds utilize vulcanization systems
based on sulfenamides and a so-called kicker. However, for the
compounds in this study, the primary building blocks are dithi-
ophosphates.

To demonstrate the simulation approach, the following con-
ditions were examined:

« Sulfur at two levels: 1.5 phr and 2.2 phr

* SDT/S (poly-sulfur dithiophosphate) at 2.2 phr

* MBTS, with a stepwise increase from 0.0 to 1.5 phr

This setup was used to investigate the possible synergy be-
tween SDT/S and MBTS (figure 8).

The modulus 100 curves exhibit an almost parallel shift, but
at higher MBTS concentrations, the slope becomes significantly
steeper at the high sulfur level compared to the low sulfur level
(figure 9). The elongation at break curves show a similar trend,
with a flatter maximum at the low sulfur level and a steeper
slope at higher MBTS levels. Interestingly, these curves appear
to be an exact inverse of the modulus curves.

The compression set curves at both low and high sulfur lev-
els demonstrate a strictly parallel shift with identical slopes
across all MBTS levels. These curves are almost linear. Given
that SDT/S and MBTS form a reversion resistant acceleration
system, the compression set depends solely on crosslink density,

and is not influenced by network breakdown due to amine based
decomposition products. Since all other ingredients were held
constant in this simulation, the observed dependency of the
compression set on the accelerator combination was expected.

In conclusion, such simulations allow for fine tuning of a
crosslinking system to optimize compound performance. How-
ever, the quality of the database must be sufficient to support
accurate calculations. The simulation, the increase of MBTS
concentration in the compound, was possible with this combi-
natin of SDT/S and sulfur only due to insufficient data for other
simulations.

Conclusion

The implementation of artificial intelligence in rubber com-
pound development represents a significant advancement, ena-
bling faster, more precise and more efficient optimization of
formulations. The examples above highlight key insights into
the role of Al driven simulations and their dependencies:

* Al-driven simulations offer precise predictions but are
highly dependent on data quality. The accuracy of any
simulation is constrained by the reliability, consistency and
completeness of the dataset used. Errors, missing values or
inconsistencies in the data can lead to misleading results,
emphasizing the need for thorough data validation before
applying Al models.

« Design of Experiments (DoE) provides well structured and
statistically distributed factor values, whereas random
datasets often require significant cleaning. Well planned
DoE studies ensure balanced data distribution, reducing
the likelihood of errors and biases. In contrast, datasets
derived from trial-and-error approaches may lack
structure, requiring additional preprocessing to extract
meaningful insights.

« The integration of Al and statistical experimental design
enhances prediction accuracy and enables more targeted
studies. Combining Al with DoE techniques creates a
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powerful framework for data driven decision making. This
approach not only improves model reliability, but also
allows for deeper analysis of compound behaviors under
varying conditions.

By merging Al driven simulations with systematic experi-
mental design, the rubber industry can significantly accelerate
its development processes, while maintaining a high level of
accuracy and efficiency. This integration reduces the reliance on
extensive physical testing, lowers costs and enables faster itera-
tions in compound formulation. As Al models continue to
evolve, their predictive capabilities will further refine material
properties, unlocking new opportunities for innovation and per-
formance optimization in rubber technology.
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